YATAPUL T CONTENT PACKAGING WITH COCOON

ERIK SIEGEL
NovEMBER 2009

AmlL ONDERSTEUNING

1. ABSTRACT

Content Packaging is the process in which content élans together is bundled into a zip file.

A file describing the content (called a manifest)dded so the receiving side can understand what
to do with it. For transporting educational content (e-Bparning courses) this is common

practice, but it is also used elsewhere (e.g. Jasa and. war files).

This presentation derives from practical experiencalimgla Content Packaging application, for
educational content, using the open source Cocoon framework.

Creating such a Content Package starts with thousands ofséltice files and involves quite a

lot of transforming, splitting and merging before #nd zip file can be assembled. Cocoon proved
itself to be a very good platform for operations like.this

2. CONTENT PACKAGING

It is a common problem: How do | transport large numbérslated files from one system to the
other? How do | keep everything, including all the refeibetween the separate files, together?
How do | make sure the receiving side knows what it getkwhat to do with it?

An often used solution for this is packaging everything axip file. For example, Java has its
Jar and .war files to transport code. Word procesgsesodt or. docx.

In the educational world this solution is called “Contestkaging”. Content Packaging is used

for instance to package complete e-learning coursegindls of content can be used:

= Texts, like instructions, help pages, etc. Often, of coumssome XML format.

= Questions in a (XML) format that allows automatic pn¢éation, answer checking and
feedback.

= |mages, sounds and films (assets)

= Application software for presenting the content (ofteasklIplayers)

A plethora of more or less complex XML and other stads has evolved around this. Some

examples are:

= Content Packaging itselfi{t p: / / ww. i nsgl obal . or g/ cont ent / packagi ng/)

= Questions and testst(t p: / / ww. i nsgl obal . or g/ questi on/)

= Educational metadatat(t p: / / www. i nsgl obal . or g/ met adat a/)

= Packaging complete courses (SCORiWt p: / / www. adl net . gov or Common Cartridge:
http://ww. i nsgl obal . org/cc/)

The net result is that it has become quite difficultdmply with all standards involved. An extra

complicating factor is that, more often than not, thmuirfor a content packaging application does

not comply to any of the standards. For instance bedaasmes from a CMS that has its own

ideas about XML formats. So before packaging, you usuadlgl teedo a lot of transformation,

splitting and/or merging of the content.

Accompanying an educational Content Package is alwaysangastip, called the manifest. A
manifest (which is of course XML) describes which fileshe package belong together (are a
unit, for instance a single question) and describesiénarhhy. Very important is also that it
contains standardized metadata. This allows a receird out where this package belongs and
what to with it.

All files in a Content Package have relations with ezthler. Questions need a player to present
themselves, content references assets (images, étm} units have a sequence, sequences are
conditional (if you have this question right, you do netd to do that one), etc.

In other words: Files in a Content Package can refereteather but there are also relations on
a higher level.

PAGE 1 OF 4

CONTENT PACKAGING WITH COCOON
NOVEMBER 2009

Content Package

Manifest
-
N
N
7] Filesina
CP refer to
each other

The manifest

groups files \
together and
creates a =

0\

hierarchy
.

To package all this and comply with all standards andticinsis not exactly easy. Sources are in
a wrong format, all references must be there, the pacaucture (directories, etc.) must be
determined, references must be adjusted to this struatoranifest build, etc. Quite a job that
results in rather complicated software. Experience hasrsthat in a traditional environment (e.qg.
Java or .NET) this is harder than it may seem atdlestce.

—

7

7

—

CoCooN

Cocoon is an open source Java framework that enables poocess XML in an intuitive way
(cocoon. apache. or g) . The fundaments of Cocoon are pipelines: Complex XML
transformations, composed of several simple transfoomatoften XSLT). These pipelines can
be combined into complex applications. The XML “streathsbugh the pipelines as SAX events,
so its performance is much better than you might expect.

If this all sounds familiar to you: Cocoon is the predseesf the XProc standard. | am however
not sure whether there is a current XProc implentiemtghat can do what | describe here.
Something for future research...

Cocoon was originally developed to create complete web3ites is indeed possible but IMHO
there are much better alternatives for doing this. Nbwehsites are easier to build with, for
instance, PHP or ASP.NET. However, the developers ob@ocreated (unwittingly?) a fantastic
platform for the manipulation and transformation of lax@éL volumes, even when the results
are not web pages at all.

Cocoon allows you to describe your XML processing ohéligmore abstract, level. Doing this in
traditional programming languages suffers from an awfubfitow level tasks like opening and
closing files, handles, writing intermediate resultsis douffering, caching, etc. In Cocoon, you
“only” have to describe your transformations: Exauttyat you need for Content Packaging.

PACKAGING

What steps are necessary to create a Content Package:

= You must of course be able to inspect and access tihheesdrom which the package must be
build. This could be anything: A CMS, a database, just 6ke disk, etc. Most common source
types are XML documents and assets.

= Qur next step is to analyze theses sources. What belmgagker, which assets are referenced,
which conversions to apply, what will become the mata, etc. This analysis uses special
description data but often also needs to inspect thembitself.

PAGE 2 OF 4

CONTENT PACKAGING WITH COCOON
NOVEMBER 2009

= The results of this analysis are used to assemble thei@@dackage. For every destination file
in the Content Package it is now known how to createhiether it is from a transformation or
just a simple copy. Also its location in the internakdiory structure of the Content Package is
determined.

= Somewhere along the way we need to create the mamfEsause our analysis describes the
Content Package in full, this can be done by transformingrialysis into the right format.

= The result must be delivered as a zip file, with tihtrhame and in the right location.

UsING COCOON

Cocoon’s pipeline architecture makes this an excellehfdothe job:

Sources

N

Cocoon engine

High level description

_>(Analysis pipeline(s) (

Zip serializer
Description file

serializer

(s)auiadid 1sajyuep

Takes care of
building the CP

(s)auijadid jusyuod

\

Content
Package
zip file

1. Somewhere (lets not get into this) there are souese ©f course, Cocoon must be able to
find and process these. It has several options farihiiging from files on disk to
databases and webservices.

2. The next step is to analyze these sources into dénighdescription of the Content
Package. The pipeline for this (or more often: a wlelées of interconnected pipelines)
results in a XML document containing all the necessarynmdtion.

This analysis document is internal and will never leheeenvironment “as-is” . Therefore
the programmer can design a format for this completetgdd the task. Because the way
Cocoon works, it will not be stored anywhere not ivivill be kept after the processing is
done. Itis fully internal. For debugging purposes it catoafse be inspected.

Cocoon has an important component called the “zip saialiA zip serializer allows you to
assemble a zip file based on a description in a XML mhecu. The source for a file in the zip can
be anything: another file but also a Cocoon pipelitnés construction allows you apply the
necessary transformations on the individual files wtmrstructing the Content Package.

3. Our high level analysis is transformed, again usipipeline, into an input file for the zip
serializer. This is an exact description of the strucinckcontents of the resulting Content
Package. It also describes exactly how to get or ctieatadividual files.

PAGE 3 OF 4

CONTENT PACKAGING WITH COCOON
NOVEMBER 2009

4, This file is passed to the zip serializer.

5. Files that are the result of a conversion operatiercrezated using specific Cocoon
pipelines. Other files are copied directly.

6. There is also a pipeline for creating the manifsis uses the analysis output as its source.

PRACTICAL EXPERIENCE

This article is based on the experiences developingadddased Content Packaging

application. This application takes its input from sal/epurces and can create about five different

flavors of Content Packages. It contains approximatblyralred pipelines and more than 500

XSLT (V2.0) transformations. The resulting Content Pgekavary in size from less than one Mb

to, in some cases, more than one Gb! It is in produftioover a year and frequently used.

Some observations developing this system:

= Using Cocoon for a system like this makes developingvit@le lot of easier. Of course you
still have to do the hard work (analyzing, writing code,)etHowever, you can attack the
problem on the right level and with the right tools. Yoe ot distracted by trivialities like
temporary files. Inserting an XSL style sheet somewlseas easy as inserting a line of code.

= Using Cocoon is not easy to learn. Like many open sdact@ologies, documentation is
scarce, incomplete and sometimes obscure. Theremelmoks but these are obsolete.

= Cocoon can handle large volumes of data easily. Contekageof over one Gb were
created without any problems. XML files of many megabwere be handled and
transformed without complaints.

= However, handling these volumes of data is not always fasati@g bulky Content Packages
can easily take more than an hour. But creating Contek&ges is (for my customer) not a
real-time operation so, although the waiting is anmgythis is not considered a serious
problem.

= |tis possible to get large performance gains by usinksttike caching and tuning
intermediate results. In one exceptional case we even ecnealing a large Content Package
five times faster.

CONCLUSION

We tried to build a Content packaging application using sedédfatent technologies but it was
not very successful: Too slow and too cumbersome to aiiridiscovering Cocoon made us very
enthusiast: Finally we seemed to have found the raghtfor the job. And this of course applies to
all problems were large volumes of XML must be handletiarrip files produced.

PAGE 4 OF 4

